CN EN
P
Products

JANUS® G3 NGS Express™ Workstation

It uses an intuitive interface to guide users through protocol selection and deck setup

An optional enclosure helps to minimize sample contamination

The PKeye™ mobile operations monitor empowers full walk-away automation through the use of integrated deck cameras.

Contact Us
  • Product description
  • Citations

The JANUS® G3 NGS Express™ workstation is a benchtop liquid handler designed to simplify and reduce errors in low-to-moderate throughput next generation sequencing library construction. It uses an intuitive interface to guide users through protocol selection and deck setup, as well as, displays in-run status and details. An optional enclosure not only helps to minimize sample contamination, but the easy to read status lights provide visual feedback for true walkaway sample preparation. Another advanced option is the PKeye™ mobile operations monitor, which empowers full walk-away automation through the use of integrated deck cameras.


NGS applications automated on the JANUS G3 NGS Express workstation include:

  • Library preparation

  • Amplicon preparation

  • Target capture preparation

  • Sample normalization


Specifications

Precision Automated Pipetting with a Wide Dynamic Volume Range

Pipetting ArmVolume% CVTip/HeadCondition
Varispan5 µL< 2%20 µL disposable tipDistilled water, 500 µL syringe
Varispan50 µL< 1%Fixed tip

Distilled water, 500 µL syring


Microplate Deck Capacity: 12


Dimensions
JANUS G3 NGS Express workstation without an enclosure
Height864 mm | 34 in
Width788 mm | 31 in
Depth838 mm | 33 in
JANUS G3 NGS Express workstation with an enclosure
Height965 mm | 38 in
Width1016 mm | 40 in
Depth890 mm | 35 in


Publications that Cite Using the Custom JANUS® G3 NGS Express™ Workstation

Bagheri, H., Friedman, H., Shao, H., Chong, Y., Lo, C., Emran, F., . . . Peterson, A. (2018). TIE: A Method to Electroporate Long DNA Templates into Preimplantation Embryos for CRISPR-Cas9 Gene Editing. The CRISPR Journal, 1(3), 223-229. doi:10.1089/crispr.2017.0020.

Briem, F., Zeisler, C., Guenay, Y., Staudacher, K., Vogt, H., & Traugott, M. (2018). Identifying plant DNA in the sponging–feeding insect pest Drosophila suzukii. Journal of Pest Science, 91(3), 985-994. doi:10.1007/s10340-018-0963-3.

Carpenter, S. L., et al. (2014) Use of Dried Blood Spots for High through-Put, Rapid Turnaround Mutational Analysis in Patients with Hemophilia, Blood, 124(5034).

Lee, J., Wang, J., Sa, J. K., Ladewig, E., Lee, H., Lee, I., . . . Nam, D. (2017). Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nature Genetics,49(4), 594-599. doi:10.1038/ng.3806

Murra, M., Lützen, L., Barut, A., Zbinden, R., Lund, M., Villesen, P., & Nørskov-Lauritsen, N. (2018). Whole-Genome Sequencing of Aggregatibacter Species Isolated from Human Clinical Specimens and Description of Aggregatibacter kilianii sp. nov. Journal of Clinical Microbiology,56(7). doi:10.1128/jcm.00053-18.

Xu, L., Brito, I. L., Alm, E. J., & Blainey, P. C. (2016). Virtual microfluidics for digital quantification and single-cell sequencing. Nature Methods,13(9), 759-762. doi:10.1038/nmeth.3955.


TOP