CN EN
P
产品中心
Product center

NEXTflex™ Small RNA Sequencing Kit v3

正常起始量的情况下,文库制备可免除凝胶纯化过程

更强的检测率,降低了测序成本

随机性接头降低连接偏差,获得更准确的原始样本量数据

联系我们
  • 产品简介
  • 工作流程
  • 试剂组分
  • 引用文献

随机性接头,减少小RNA建库中的偏差,并可免除小RNA建库中的凝胶纯化

NEXTflex™ Small RNA Sequencing Kit v3 使用的专利和正在申请中的专利技术为small RNA建库提供一个可以减少偏差的实验方案,可免除凝胶纯化或使用低样本起始量,这个方案适用于Illumina平台。Bioo Scientific 用以减少连接偏差的方法是在连接步骤中使用随机性接头,相比传统的方法而言,大大减少了偏差的产生。数据中偏差的减少,更加准确的反应出起始材料中small RNA的丰度。此外,还能够在更少的总reads数中检测到更多的miRNAs,提高small RNA的测序效率,降低测序成本。


NEXTflex Small RNA-Seq Kit v3 可免除Small RNA建库中的凝胶纯化过程,且降低样本起始量。试剂盒采用两种方法大幅降低接头二聚体的形成,以免除凝胶纯化。样品起始量为 ≥200 ng 的总RNA时,small RNA建库可通过减少接头二聚体的方式免除凝胶纯化过程。使用 NEXTflex Small RNA-Seq kit v3 进行免凝胶电泳建库可获得高miRNAs读取率。文库制备的样本起始量可少至1ng总RNA,需增加PCR循环数,获得无接头二聚体的文库(低样本起始量文库构建通常需要进行凝胶片段选择)。


产品特点:

  • 正常起始量的情况下,文库制备可免除凝胶纯化过程

  • 更强的检测率,降低了测序成本

  • 随机性接头降低连接偏差,获得更准确的原始样本量数据

  • 文库制备起始量可低至1ng,此方案仍需进行凝胶纯化

  • AIR™ Ligase ,一种高效的截短型的T4 RNA连接酶,增加测序深度

  • 可利用更大的样本量-10.5 µL的起始量样本

  • 试剂盒中包含48种barcodes 运用于多重测序

  • 经Illiumina 测序平台验证


产品列表:

货号产品名称规格
NOVA-5132-05

NEXTflex™ Small RNA Sequencing Kit v3(8 barcodes)

8 RXNS
NOVA-5132-06

NEXTflex™ Small RNA Sequencing Kit v3(48 barcodes)

48 RXNS
NOVA-513121

 NEXTflex™ Small RNA Sequencing Kit v3-Blockers

8 RXNS
NOVA-513122NEXTflex™ Small RNA Sequencing Kit v3-Blockers48 RXNS
NOVA-513123NEXTflex™ Small RNA Sequencing Kit v3-Blockers96 RXNS


工作流程:

KIT CONTENTS


  • NEXTFLEX® 3’ 4N Adenylated Adapter

  • NEXTFLEX® 3’ Ligation Buffer

  • NEXTFLEX® 3’ Ligation Enzyme Mix

  • NEXTFLEX® Adapter Depletion Solution

  • NEXTFLEX® Adapter Inactivation Buffer

  • NEXTFLEX® Adapter Inactivation Enzyme

  • NEXTFLEX® 5’ 4N Adapter

  • NEXTFLEX® 5’ Ligation Buffer

  • NEXTFLEX® 5’ Ligation Enzyme Mix

  • M-MuLV Reverse Transcriptase

  • NEXTFLEX® RT Buffer

  • NEXTFLEX® Universal Primer

  • NEXTFLEX® Barcode Primer

  • NEXTFLEX® Small RNA PCR Master Mix

  • 6X Loading Dye

  • Ready to Load Low MW Ladder

  • Resuspension Buffer

  • Nuclease-free Water

  • microRNA Control

  • NEXTFLEX® Cleanup Beads

  • NEXTFLEX® Elution Buffer


REQUIRED MATERIALS NOT PROVIDED


  • 1 ng – 2 μg total RNA or purified small RNA from 1-10 μg total RNA in up to 10.5 μL Nuclease-free Water

  • Isopropanol

  • 80% Ethanol

  • 2, 10, 20, 200 and 1000 μL pipettes

  • RNase-free pipette tips

  • Microcentrifuge

  • 96 well PCR Plate Non-skirted (Phenix Research®, Cat # MPS-499) or similar

  • Thin-wall nuclease-free PCR tubes

  • Thermocycler

  • Heat block

  • Vortex

  • Magnetic Stand -96 (Thermo Fisher Scientific®, Cat # AM10027) or similar

NEXTflex™ Small RNA Sequencing Kit v3 部分引用文献

Carney, M. C., Tarasiuk, A., DiAngelo, S. L., Silveyra, P., Podany, A., Birch, L. L., … & Hicks, S. D. (2017). Metabolism-related microRNAs in maternal breast milk are influenced by premature delivery. Pediatric research, 82(2), 226.

Chen, Y., Wang, J., Yang, S., Utturkar, S., Crodian, J., Cummings, S., & Plaut, K. (2017). Effect of high-fat diet on secreted milk transcriptome in midlactation mice. Physiological genomics, 49(12), 747-762.

Chotewutmontri, P., Stiffler, N., Watkins, K. P., & Barkan, A. (2018). Ribosome Profiling in Maize. In Maize (pp. 165-183). Humana Press, New York, NY.

Chu, C. P., & Nabity, M. B. (2019). Comparison of RNA isolation and library preparation methods for small RNA sequencing of canine biofluids. Veterinary Clinical Pathology. doi:10.1111/vcp.12743.

Coenen-Stass, A.M.L., et al. (2018) Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biology. 15: 8. 15:8, 1133-1145. doi: 10.1080/15476286.2018.1514236.

Dard-Dascot, C., et al. (2018) Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 19(118), doi:10.1186/s12864-018-4491-6.

Fu, F. et al. (2018) Loss of mCHH islands in maize chromomethylase and DDM1-type nucleosome remodeler mutants. dx.doi.org/10.1101/253567.

Garcia-Elias, A. et al. (2017) Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs. Scientific Reports. 7: 7725. doi:10.1038/s41598-017-08134-3.

Ghasemzadeh, A., ter Haar, M. M., Shams-bakhsh, M., Pirovano, W., & Pantaleo, V. (2018). Shannon entropy to evaluate substitution rate variation among viral nucleotide positions in datasets of viral siRNAs. In Viral Metagenomics (pp. 187-195). Humana Press, New York, NY.

Giraldez, M. D., Spengler, R. M., Etheridge, A., Godoy, P. M., Barczak, A. J., Srinivasan, S., . . . Tewari, M. (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nature Biotechnology. doi:10.1038/nbt.4183

Han, S. A., Jhun, B. W., Kim, S.-Y., Moon, S. M., Yang, B., Kwon, O. J., … Koh, W.-J. (2020). miRNA Expression Profiles and Potential as Biomarkers in Nontuberculous Mycobacterial Pulmonary Disease. Scientific Reports, 10(1). doi: 10.1038/s41598-020-60132-0

He, R., Xie, X., Lv, L., Huang, Y., Xia, X., Chen, X., & Zhang, L. (2017). Comprehensive investigation of aberrant microRNAs expression in cells culture model of MnCl2-induced neurodegenerative disease. Biochemical and biophysical research communications, 486(2), 342-348.

Hicks, S. D., Carney, M. C., Tarasiuk, A., DiAngelo, S. L., Birch, L. L., & Paul, I. M. (2017). Breastmilk microRNAs are stable throughout feeding and correlate with maternal weight.

Hicks, S. D., Johnson, J., Carney, M. C., Bramley, H., Olympia, R. P., Loeffert, A. C., & Thomas, N. J. (2018). Overlapping microRNA expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury. Journal of neurotrauma, 35(1), 64-72.

Kim, K., Yoo, D., Lee, H. S., Lee, K. J., Park, S. B., Kim, C., . . . Song, S. Y. (2019). Identification of potential biomarkers for diagnosis of pancreatic and biliary tract cancers by sequencing of serum microRNAs. BMC Medical Genomics,12(1). doi:10.1186/s12920-019-0521-8.

Ku, A., Ravi, N., Yang, M., Evander, M., Laurell, T., Lilja, H., & Ceder, Y. (2019). A urinary extracellular vesicle microRNA biomarker discovery pipeline; from automated extracellular vesicle enrichment by acoustic trapping to microRNA sequencing. Plos One, 14(10). doi: 10.1371/journal.pone.0224604.

Lee, E. K., Jeong, H. O., Bang, E. J., Kim, C. H., Mun, J. Y., Noh, S., & Chung, H. Y. (2018). The involvement of serum exosomal miR-500-3p and miR-770-3p in aging: modulation by calorie restriction. Oncotarget, 9(5), 5578–5587. http://doi.org/10.18632/oncotarget.23651.

Mateescu, B., Kowal, E. J., van Balkom, B. W., Bartel, S., Bhattacharyya, S. N., Buzás, E. I., … & Driedonks, T. A. (2017). Obstacles and opportunities in the functional analysis of extracellular vesicle RNA–an ISEV position paper. Journal of extracellular vesicles, 6(1), 1286095.

Miranda, R. G., McDermott, J. J., & Barkan, A. (2017). RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR–RNA interactions. Nucleic acids research.

Nguyen, Q., Iritani, A., Ohkita, S., Vu, B. V., Yokoya, K., Matsubara, A., & Nakayashiki, H. (2018). A fungal Argonaute interferes with RNA interference. Nucleic acids research.

Ong, J., Woldhuis, R. R., Boudewijn, I. M., Berg, A. V., Kluiver, J., Kok, K., . . . Brandsma, C. A. (2019). Age-related gene and miRNA expression changes in airways of healthy individuals. Scientific Reports,9(1). doi:10.1038/s41598-019-39873-0.

Oxnard, G. et al. (2020) Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trial (ALCHEMIST).

Pinti, M. V., Hathaway, Q. A., Kunovac, A., Durr, A. J., Cook, C. C., Roberts, H. G., Salman, M., and Hollander, J. M. (2019) microRNA Changes in Diabetic Cardiac Mitochondria: What are they doing there? FASEB J. doi:10.1096/fasebj.2019.33.1_supplement.713.3.

Prieto-Fernández E, Aransay AM, Royo F, et al. (2019) A Comprehensive Study of Vesicular and Non-Vesicular miRNAs from a Volume of Cerebrospinal Fluid Compatible with Clinical Practice. Theranostics. 9(16):4567–4579. doi:10.7150/thno.31502

Rafael G Miranda, James J McDermott, Alice Barkan; RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR–RNA interactions, Nucleic Acids Research, Volume 46, Issue 5, 16 March 2018, Pages 2613–2623, https://doi.org/10.1093/nar/gkx1288.

Rosenberg, A. Z., Wright, C., Fox-Talbot, K., Rajpurohit, A., Williams, C., Porter, C., . . . Halushka, M. K. (2018). XMD-miRNA-seq to generate near in vivo miRNA expression estimates in colon epithelial cells. doi:10.1101/333658.

Russell, S. J., Menezes, K., Balakier, H., & Librach, C. (2020). Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods. Systems Biology in Reproductive Medicine, 1–11. doi: 10.1080/19396368.2020.1716108.

Wei J, Blenkiron C, Tsai P, James JL, Chen QI, Stone PR, Chamley LW. (2017) Placental trophoblast debris mediated feto-maternal signaling via small RNA delivery: implications for preeclampsia. Scientific Reports. 7:14681. doi.org/10.1038/s41598-017-14180-8

Wright, C., Rajpurohit, A., Burke, E. E., Williams, C., Collado-Torres, L., Kimos, M., . . . Shin, J. H. (2018). Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. bioRxiv 445437. doi:10.1101/445437.

Yeri, A., et al. (2018) Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genomics 201819:331. doi: 10.1186/s12864-018-4726-6.

Zaragoza C, Saura M, Hernández I, et al. (2019) Differential expression of circulating miRNAs as a novel tool to assess BAG3-associated familial dilated cardiomyopathy. Biosci Rep. 39(3):BSR20180934. doi:10.1042/BSR20180934.

Zhang J, Zhang Y, Shen W, Fu R, Ding Z, Zhen Y, Wan Y. (2019) Cytological effects of honokiol treatment and its potential mechanism of action in non-small cell lung cancer. Biomedicine & Pharmacotherapy. 9(117): 109058. doi.org/10.1016/j.biopha.2019.109058

TOP