CN EN
P
产品中心
Product center
产品中心
Product center

NEXTflex™ Rapid Directional RNA-Seq Kits

快速的建库流程,节省人工操作时间

合理化的实验方案,减少样本损失

提供精确的mRNA 链定向测量(>99%)

联系我们
  • 产品简介
  • 实验数据
  • 试剂组分
  • 引用文献
  • 工作流程

NEXTflex™ Rapid Directional RNA-Seq Kit 为mRNA 或去除rRNA 总RNA的单端、双端和多重链特异性文库构建提供一个简单、灵活的解决方案。这个试剂盒可以用于获取RNA转录中DNA模板链的信息,准确率大于99%。与普通转录组测序相比,它更能准确地统计转录本的数量和确定基因的结构,同时可以发现更多的反义转录本,目前被广泛地应用于研究基因结构和基因表达调控等领域范围,并能够减少每个样本的测序费用。

NEXTflex™ Rapid Directional mRNA-Seq Kit 套装

为了简化mRNA 测序,PerkinElmer公司现在提供一个套装,包括NEXTflex Rapid Directional RNA-Seq library 建库试剂,NEXTflex RNA-Seq Barcodes 和NEXTflex Poly(A) Beads 。这个试剂盒有两个不同的版。每个试剂盒包含48次的NEXTflex Rapid Directional RNA-Seq Kit,NEXTflex Poly(A) Beads (48 rxns )和24种独立NEXTflex RNA-Seq Barcodes。


产品特点:

  • 快速的建库流程,节省人工操作时间

  • 合理化的实验方案,减少样本损失

  • 基于dUTP的方法

  • 提供精确的mRNA 链定向测量(>99%)

  • 稳定的、可靠的实验流程

  • 起始量1-100 ng mRNA或者去除rRNA 的总RNA

  • 多达96种barcodes 运用于多重测序

  • 匹配PE Sciclone的NGS和NGSx自动化建库系统

  • 经Illumina 测序平台验证

  • 可用于单端或者双端转录组测序


多重测序

NEXTflex Rapid Directional RNA-Seq Kit与NEXTflex™ RNA-Seq Barcodes 或者NEXTflex-96™ RNA-Seq Barcodes一起用于多重测序。这个多达96种独立接头的高通量试剂盒适用于Illumina RNA 测序平台。


产品列表:

货号产品名称规格
NOVA-5138-07

NEXTflex™ Rapid Directional RNA-Seq Kit

8 RXNS
NOVA-5138-08

NEXTflex™ Rapid Directional RNA-Seq Kit

48 RXNS
NOVA-5138-10

NEXTflex™ W/ RNA-SEQ BARCODES 1 - 24 & POLY(A) BEADS

48 RXNS
NOVA-5138-11NEXTflex™ W/ RNA-SEQ BARCODES 25 - 48 & POLY(A) BEADS48 RXNS


image.png

Figure 1.与竞争者N 文库产量的比较

1) 插入片段范围为200-400bp(Agilent Bioanalyzer)(Figure 5A)

2) Figure 1B 代表Comp N的文库量,Figure 5C 代表NEXTflex 1:5 稀释的文库量,NEXTflex的文库浓度是Competitor N的四倍


rRNA and Other Non-Coding RNA

image.png

Figure 2. rRNA Mapping

RNA建库过程有少量的rRNA污染,但是NEXTflex Rapid Directional RNA-Seq Kit与Competitor N’s kit相比,rRNA 的读取率低,文库量高,有用的测序reads所占比例高



Read Mapping

Table 1. Unique Mapping Rate and Number of Unique Reads.

Kit NameUnique Mapped

Unique Mapped Reads

 (millions)

NEXTflex™ Rapid Directional RNA-Seq Kit53.49% ± 1.16% 1.604 ± 35
Competitor N Directional RNA-Seq Kit44.08% ± 3.95%1.321 ± 118

image.png

Figure 3. Reads Mapping Metrics

NEXTflex Rapid Directional RNA-Seq Kit比较结果:

1) 更高的唯一mapped reads百分比

2) 较低的重复率

3) 检测出更多的转录本

KIT CONTENTS


  • NEXTFLEX® RNA Fragmentation Buffer

  • NEXTFLEX® First Strand Synthesis Primer

  • NEXTFLEX® Directional First Strand Synthesis Buffer Mix

  • NEXTFLEX® Rapid Reverse Transcriptase

  • NEXTFLEX® Directional Second Strand Synthesis Mix

  • NEXTFLEX® Adenylation Mix

  • NEXTFLEX® Ligation Mix

  • NEXTFLEX® RNA-Seq Barcode Adapter 1 (0.6 µM)

  • NEXTFLEX® Uracil DNA Glycosylase

  • NEXTFLEX® Primer Mix (12.5 µM)

  • NEXTFLEX® PCR Master Mix

  • Nuclease-free Water

  • Resuspension Buffer


REQUIRED MATERIALS NOT PROVIDED


  • 10 ng – 1 µg total RNA for enrichment by NEXTFLEX® Poly(A) Beads 2.0 or ~ 1 ng – 100 ng isolated mRNA or rRNA-depleted RNA

  • DynaMag™-2 Magnet (Life Technologies Cat # 123-21D)

  • Commercial kits for rRNA depletion (optional, if not using poly(A) enrichment)

  • 100% Ethanol (stored at room temperature)

  • 80% Ethanol ( freshly prepared )

  • 2, 10, 20, 200 and 1000 µL pipettes

  • RNase-free pipette tips

  • Nuclease-free 1.5 mL microcentrifuge tubes

  • Thin wall nuclease-free 0.5 mL microcentrifuge tubes

  • 96 well PCR Plate Non-skirted (Phenix Research, Cat # MPS-499) / or / similar

  • Adhesive PCR Plate Seal (BioRad, Cat # MSB1001)

  • Agencourt AMPure XP 60 mL (Beckman Coulter Genomics, Cat # A63881)

  • Magnetic Stand -96 (Ambion, Cat # AM10027) / or / similar for post PCR cleanup

  • Microcentrifuge

  • Thermocycler

  • Heat block

  • Vortex


NEXTflex™ Rapid Directional RNA-Seq Kits部分引用文献

Beyaz, S. et al. (2016) High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 531, 53–58. doi:10.1038/nature17173.

Blance, S., et al. (2016) Stem cell function and stress response are controlled by protein synthesis. Stem cell function and stress response are controlled by protein synthesis. Nature, 534, 335–340. doi:10.1038/nature18282.

Bonizzoni, M., et al. (2013) Probing functional polymorphisms in the dengue vector, Aedes aegypti. BMC Genomics. 14:739 http://www.biomedcentral.com/1471-2164/14/739.

Carnes, M. U., et al. (2015) The Genomic Basis of Postponed Senescence in Drosophila melanogaster. PLoS ONE. doi: 10.1371/journal.pone.0138569.

Denzler, R., Agarwal V., Stefano J., Bartel DP. and Stoffel, M. (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell. 54:4 pp 766-76.

Dharshinia, S., et al. (2016) De novo sequencing and transcriptome analysis of a low temperature tolerant Saccharum spontaneum clone IND 00-1037.  J of Biotechnology. doi: 10.1016/j.jbiotec.2016.05.036.

Dobáková, E., Flegontov, P., Skalický, T. and Lukeš, J. (2015) Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis. Genome Biol Evol. 7. 3358-3367. doi:10.1093/gbe/evv229.

Fang, W. and Bartel, D. P. (2015) The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Molecular Cell. 60:1. p131–145. doi: 10.1016/j.molcel.2015.08.015.

Guérin, F., Isnard, C., Cattoir, V. and Giard, J. C. (2015) Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex. Antimicrob. Agents Chemother., 59: 7753 – 7761. doi: 10.1128/AAC.01729-15.

Jones, B. M., Wcislo, W. T. and Robinson, G. E. (2015) Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis. g3, Oct 2015; 5: 2127 – 2135. doi: g3.115.021261v1.

Lamanna, F., et al. (2015) Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genomics. 16:668 . doi:10.1186/s12864-015-1858-9.

Lin, M.-H., Jones, D. F. and Fleming, R. (2015) Transcriptomic analysis of degraded forensic body fluids, Forensic Science International: Genetics, Volume 17.  35-42. dio: 10.1016/j.fsigen.2015.03.005.

McNeill, M. S., Kapheim, K. M., Brockmann, A., McGill, T. A. W., Robinson, G. E. (2015) Brain regions and molecular pathways responding to food reward type and value in honey bees. Genes, Brain and Behavior. doi: 10.1111/gbb.12275.

Mullenders, J., et al. (2015) Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J. Exp. Med. 2015; 212:1833-1850.  doi: 10.1084/jem.20151323.

Nam, J., Rissland, O.S., Koppstein, D. et al. (2014) Global Analyses of the Effect of Different Cellular Contexts on MicroRNA Targeting. Molecular Cell. http://dx.doi.org/10.1016/j.molcel.2014.02.013.

Pham, K. T. M., et al. (2015) MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis. PLOS Genetics. doi: 10.1371/journal.pgen.1005385.

Rittschofa, C. C., et al. (2014)  Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee. PNAS. doi: 10.1073/pnas.1420369111.

Rossetto CC, Tarrant-Elorza M, Pari GS (2013) Cis and Trans Acting Factors Involved in Human Cytomegalovirus Experimental and Natural Latent Infection of CD14 (+) Monocytes and CD34 (+) Cells. PLoS Pathog 9(5): e1003366. doi:10.1371/journal.ppat.1003366.

Rube, H. T., et al. (2016) Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nature Communications. 7:11025. doi:10.1038/ncomms11025.

Solovchenko, A., et al. (2016) Nitrogen availability modulates CO2 tolerance in a symbiotic chlorophyte, Algal Research, 16, 177-188. doi: 10.1016/j.algal.2016.03.002.

Tarvin, R. D., Santos, J. C., O’Connell, L. A., Zakon, H. H. and Cannatella, D. C. (2016) Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs. Mol Biol Evol. 33:4. 1068-1081. doi: 10.1093/molbev/msv350.

Van Laar, T, A., Chen, T, You, T., and Leung, K. P. (2015) Sublethal Concentrations of Carbapenems Alter Cell Morphology and Genomic Expression of Klebsiella pneumoniae Biofilms. Antimicrobial Agents and Chemotherapy. doi: 10.1128/AAC.04581-14.

Wheeler, M. M. and Robinson G. E. (2014) Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Scientific Reports. 4: 5726. doi:10.1038/srep05726.

Zhang, Y. et al. (2015) Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu. PLOS One. doi: 10.1371/journal.pone.0131559.


工作流程:

TOP