CN EN
P
产品中心
Product center
产品中心
Product center

NEXTflex™ PCR-Free DNA Sequencing Kits

提高read覆盖率

减少接头二聚体

更好的短序列组装效果

联系我们
  • 产品简介
  • 工作流程
  • 试剂组分
  • 引用文献

NEXTflex™ PCR-Free DNA Sequencing Kit包含最初的NEXTflex™ DNA Sequencing Kit的优点和特别设计的master-mixed enzymes,NEXTflex™ PCR-Free DNA Sequencing Kit不需要PCR扩增。


扩增AT或GC丰富的基因区域时会引起核苷酸组成序列偏差,并对分析过程造成严重的障碍。使用特别设计的master-mixed enzymes,NEXTflex PCR-Free DNA Sequencing Kit省去了对扩增的需求,能够得到更好的read覆盖率、减少接头二聚体,可降低测序成本和测序偏差,得到更好的短序列组装效果。在评估偏差时,低质量和高GC reads的存在,导致序列不能与参考基因组保持一致。序列高GC含量会导致GC含量随PCR继续提高,这表示基础性表达较差。使用本试剂盒不需要进行PCR,因此不会产生扩增偏差,从而获得更多代表性reads。同时,PCR也是引起基因重复的一个重要原因,这样会增加测序成本、接头二聚体和在簇检测中的阻碍。使用NEXTflex PCR-Free Kit试剂盒,用户能够减少重复序列数量,确保得到更良好的reads匹配数。


NEXTflex PCR-Free Kit运用“Enhanced Ligation Adapter Technology”这项专利,可在建库时生成大量的不同的测序reads。NEXTflex连接酶混合液的优势在于连接步骤中可连接更长的接头并可达到更好的连接效率。NEXTflex PCR-Free Kit通过使用酶预混液、磁珠纯化来简化实验流程,减少测序工作者移液步骤和建库消耗的时间。


多重测序

NEXTflex™ PCR-Free Barcodes 包含6, 12, 24 或 48 种独特barcodes ,应用于多重测序。

试剂盒采用磁珠纯化进行片段选择,为gel-free 文库构建,样本起始量低至500ng DNA。


产品特点:

  • 提高read覆盖率

  • 减少接头二聚体

  • 更好的短序列组装效果

  • 接头连接效率高

  • DNA起始量低至500ng

  • 灵活的barcodes供选择-NEXTflex PCR-Free Barcode 

  • kits 包含6, 12, 24, 和48 重独特barcodes

  • 基于磁珠纯化的实验设计流程

  • 匹配Tecan Freedom EVO Workstation


产品列表: 

货号产品名称规格
NOVA-5142-01

NEXTFLEX® PCR-Free DNA-Seq Kit 

for Illumina® Platforms

8 RXNS
NOVA-5142-02

NEXTFLEX® PCR-Free DNA-Seq Kit 

for Illumina® Platforms

48 RXNS
NOVA-514110

NEXTflex™ PCR-Free DNA 

Barcodes - 6

48 RXNS
NOVA-514111

NEXTflex™ PCR-Free DNA 

Barcodes - 12

96 RXNS
NOVA-514112

NEXTflex™ PCR-Free DNA 

Barcodes - 24

192 RXNS
NOVA-514113

NEXTflex™ PCR-Free DNA 

Barcodes - 48

384 RXNS


NEXTflex PCR-Free Sequencing Kit 工作流程:

KIT CONTENTS


  • NEXTFLEX® PCR-Free End Repair Buffer Mix

  • NEXTFLEX® PCR-Free End Repair Enzyme Mix

  • NEXTFLEX® PCR-Free Adenylation Mix

  • NEXTFLEX® PCR-Free Ligation Mix

  • NEXTFLEX® PCR-Free DNA Adapter (50 µM)

  • Nuclease-free Water

  • Resuspension Buffer


REQUIRED MATERIALS NOT PROVIDED


  • 500 ng to 3 µg of fragmented genomic DNA in up to 40 µL nuclease-free water.

  • NEXTFLEX® PCR-Free Barcodes – 6 / 24  (Cat # 514110, 514112)

  • Ethanol 80% (room temperature)

  • 96-well PCR Plate Non-skirted (Phenix Research, Cat # MPS-499) / or / similar

  • 96-well Library Storage and Pooling Plate (Fisher Scientific, Cat # AB-0765) / or / similar

  • Adhesive PCR Plate Seal (BioRad, Cat # MSB1001)

  • Agencourt AMPure XP 5 mL (Beckman Coulter Genomics, Cat # A63880)

  • Magnetic Stand -96 (Ambion, Cat # AM10027) / or / similar

  • Heat block

  • Thermocycler

  • 2, 10, 20, 200 and 1000 µL pipettes / multichannel pipettes

  • Nuclease-free barrier pipette tips

  • Microcentrifuge

  • 1.5 mL nuclease-free microcentrifuge tubes

  • Vortex

  • qPCR Library Quantification Kit / or / the following components:

  • qPCR dilution buffer: 10 mM Tris HCl pH 8.0, 0.05% Tween 20

  • Control Templates

  • qPCR Primer 1 – HPLC Purified – 5’AATGATACGGCGACCACCGA -3’

  • qPCR Primer 2 – HPLC Purified – 5’CAAGCAGAAGACGGCATACGA -3’

NEXTflex™ PCR-Free DNA-Seq Kit 部分引用文献

Bartoli, C., Carrere, S., Lamichhane, J. R., Varvaro, L. and Cindy E. Morris, C. E. (2015) Genome Sequencing of 10 Pseudomonas syringae Strains Representing Different Host Range Spectra. Genome Announc. doi: 10.1128/genomeA.00379-15.

Chusova, O, et al. (2014) Effect of pine bark on the biotransformation of trinitrotoluene and on the bacterial community structure in a batch experiment. Ecological Technology. doi: 10.1080/09593330.2014.909888.

Chusova, O. et al. (2015) Biotransformation of pink water TNT on the surface of a low-cost adsorbent pine bar.Biodegradation. doi:10.1007/s10532-015-9740-7.

Evrony, Cai, et al. (2012) Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain. Cell. doi: 10.1016/j.cell.2012.09.035

Hasbún, R., Iturra, C., Bravo, S., Rebolledo-Jaramillo, B. and Valledor, L. (2016) Differential Methylation of Genomic Regions Associated with Heteroblasty Detected by M&M Algorithm in the Nonmodel Species Eucalyptus globulus Labill. International Journal of Genomics. doi: 10.1155/2016/4395153.

Kocher, A., et al. (2016) Vector soup: high-throughput identification of neotropical phlebotomine sand flies using metabarcoding. Molecular Ecology Resources. doi:10.1111/1755-0998.12556.

Kofler, R., Nolte, V. and Schlötterer, C. (2015) Tempo and Mode of Transposable Element Activity in Drosophila. PLOS Genetics. doi: 10.1371/journal.pgen.1005406.

Kofler, R., Nolte, V. and Schlötterer, C. (2015) The impact of library preparation protocols on the consistency of allele frequency estimates in Pool-Seq data. Molecular Ecology Resources. doi: 10.1111/1755-0998.12432.

Ligi T, et al. (2013) Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecological Engineering. doi: 10.1016/j.ecoleng.2013.09.007.

Mändar, R. et al. (2015) Complementary seminovaginal microbiome in couples. Research in Microbiology. doi:10.1016/j.resmic.2015.03.009.

Mazueta, C., Bouchierb, C. and Popoffadoi, M. R. (2015) Draft Genome Sequence of Clostridium botulinum Strain 277-00 Type B2. Genome Announc. doi: 10.1128/genomeA.00211-15.

Petersen, G., et al. (2015) Phylogeny of the Alismatales (Monocotyledons) and the relationship of Acorus (Acorales?). Cladistics. doi: 10.1111/cla.12120.

Sato S, Sesay AK, Holder AA (2013) The Unique Structure of the Apicoplast Genome of the Rodent Malaria Parasite Plasmodium chabaudi chabaudi. PLoS ONE. doi:10.1371/journal.pone.0061778.

Suzuki, S, et al. (2014)Physiological and genomic features of highly alkaliphilic hydrogen -utilizing Betaproteobacteria from a continental serpentinizing site. Nature Communications . doi: 10.1038/ncomms4900.

TOP